• 上海电视节何冰获最佳男主角奖 马伊琍获最佳女主角奖 2019-11-14
  • 2018全国高考结束,多省份公布放榜时间 2019-11-14
  • 国际锐评:反制更快更强更准!中国坚决打赢对美贸易自卫反击战! 2019-10-25
  • 历朝历代的更替,又说明了什么呢? 2019-10-24
  • 进编制、最好是提干、这依然是大家的就业选择。公有制体制面临大革命了。有效释放进入体制享福的劳动力。 2019-10-23
  • 朝鲜军人敬了一个礼 特朗普看到后马上回了一个 2019-10-23
  • 研究:亚洲民众更关注健康食品 2019-10-21
  • 孕妇每天一两杯咖啡 不会影响胎儿 2019-10-21
  • 山西:首批2亿元专项资金保障提升农村安全饮水工程 2019-10-14
  • 英国成功完成机器人辅助眼部手术试验 2019-10-14
  • 其实,生产力发展了,社会财富丰富了,把小萌们养起来也不是什么问题……但你们不能被养着还养出脾气来还妄图对真正的劳动者指手画脚! 2019-10-08
  • 广州今年建成1500公里污水管网 2019-09-19
  • 人贵有自知之明嘛[哈哈] 2019-09-19
  • 少些功利才能重拾学习的乐趣 2019-09-09
  • 昌吉州:让绿色成为生态底色发展主色 2019-09-09
  • 当前位置 > 首页 > 技术热点 > 数据挖掘与机器学习:有什么区别?

    象棋怎么玩新手入门口诀教程:数据挖掘与机器学习:有什么区别?

    国际象棋时间规则 www.ruaef.tw 来源:中国数据分析行业网 | 时间:2019-09-18 | 作者:数据委

     

    我们快速增长的数字世界已经普及了,产生大量的新术语和短语,以至于我们很容易不知所措或迷失方向。

     

    具体来说,这就是“数据挖掘”和“机器学习”所面临的问题。由于一些共同的特征,这两个词之间的界限有时会变得模糊。为了使事情更加清晰,我们将探讨数据挖掘和机器学习之间的显著区别。

     

    什么是数据挖掘?

    数据挖掘被认为是从大量数据中提取有用信息的过程。它用于在数据中发现新的、准确的和有用的模式,为需要它的组织或个人寻找意义和相关信息。它是人类使用的工具。

     

    机器学习是什么?

    另一方面,机器学习是发现算法的过程,这些算法得益于从数据中获得的经验。这是一种设计、研究和开发算法的方法,它允许机器在没有人类干预的情况下学习。它是一种让机器变得更智能的工具,消除了人为因素(但不是消除人类自身;那将是错误的)。

     

    他们有什么共同点?

    数据挖掘和机器学习都属于数据科学的范畴,这是有道理的,因为它们都使用数据。这两个过程都用于解决复杂的问题,因此,许多人(错误地)将这两个术语互换使用??悸堑交餮坝惺北挥米鹘杏杏檬萃诰虻囊恢质侄?,这并不奇怪。虽然从数据挖掘中收集的数据可以用来教机器,但是这两个概念之间的界限变得有些模糊。

     

    此外,这两个过程使用相同的关键算法来发现数据模式。

     

    他们有什么不同?

    所以我们看到他们的相似之处很少,但是由于数据的重叠,这两个术语仍然很容易混淆。另一方面,两者之间有相当多的差异。因此,为了清晰和组织,我们将给出每个项目的项目符号。

     

    让我们来挖掘一下数据挖掘和机器学习之间的一些区别:

     

    时间

    首先,数据挖掘比机器学习早20年,后者最初称为数据库中的知识发现(KDD)。在某些领域,数据挖掘仍然称为KDD?;餮笆状纬鱿衷谄迮逃蜗烦绦蛑?。数据挖掘从20世纪30年代就开始了;机器学习出现在20世纪50年代。

     

    目的

    数据挖掘是为了从大量数据中提取规则,而机器学习则是教计算机如何学习和理解给定的参数?;蛘呋痪浠八?,数据挖掘只是一种研究方法,根据收集的数据总量来确定特定的结果。另一方面,我们有机器学习,它训练一个系统去执行复杂的任务,并利用收集到的数据和经验变得更聪明。

     

    使用

    数据挖掘依赖于大量的数据存储(例如,大数据),而这些数据反过来又被用来为企业和其他组织做出预测。另一方面,机器学习使用的是算法,而不是原始数据。

     

    因素

    这里有一个相当显著的区别。数据挖掘依赖于人为干预,最终是为人们所使用而创建的。而机器学习存在的全部原因是它可以自学,而不依赖于人类的影响或行动。如果没有一个活生生的人使用它并与之交互,数据挖掘就无法正常工作。另一方面,人类与机器学习的接触,很大程度上仅限于建立初始算法。然后顺其自然,就像“设置好,然后忘记”的过程。人们照看数据挖掘;这些系统通过机器学习来照顾自己。

     

    联系

    此外,数据挖掘是一个包含两个元素的过程:数据库和机器学习。前者提供数据管理技术,而后者提供数据分析技术。因此,虽然数据挖掘需要机器学习,但机器学习并不一定需要数据挖掘。不过,在某些情况下,来自数据挖掘的信息用于查看关系之间的连接。毕竟,除非你有至少两条信息可以互相比较,否则很难进行比较!因此,通过数据挖掘收集和处理的信息可以用来帮助机器学习,但这不是必需的。更多地把它看作是一种方便。

     

    能力

    这里有一个简单的例子:数据挖掘无法学习或适应,而这正是机器学习的全部意义所在。数据挖掘遵循预先设定的规则,是静态的,而机器学习则根据合适的情况调整算法。数据挖掘只有在用户输入参数时才算智能;机器学习意味着这些计算机变得越来越智能。

     

    使用

    在实用性方面,每一种工艺都有其独特之处。数据挖掘应用于零售业,以了解客户的购买习惯,从而帮助企业制定更成功的销售策略。社交媒体是数据挖掘的沃土,因为从用户档案、查询、关键字和共享中收集信息可以放在一起。它将帮助广告商组织相关的促销活动。金融界使用数据挖掘来研究潜在的投资机会,甚至是初创企业成功的可能性。收集这些信息有助于投资者决定是否要投资新项目。如果数据挖掘早在90年代中期就得到完善,它完全可以防止90年代末优秀的互联网初创企业倒闭。

     

    这说明了什么呢?

    每天,我们的世界都有越来越多的人求助于数字解决方案来处理任务和解决问题。这是一个足够大的数字世界,有足够的空间让数据挖掘和机器学习蓬勃发展。大数据的持续主导地位意味着总有数据挖掘的需求。对智能机器的持续驱动和需求将确?;餮叭匀皇且幌罘浅J芑队募寄?。

     

    你可能会想,哪个最有潜力?没有明确的答案,但我们可以做出一个体面的、有根据的猜测。人们对人工智能和智能设备越来越感兴趣,移动设备的使用也在不断增加,这些都是好的迹象。在这两个过程中,机器学习可能提供了最好的机会。

     

     

     

  • 上海电视节何冰获最佳男主角奖 马伊琍获最佳女主角奖 2019-11-14
  • 2018全国高考结束,多省份公布放榜时间 2019-11-14
  • 国际锐评:反制更快更强更准!中国坚决打赢对美贸易自卫反击战! 2019-10-25
  • 历朝历代的更替,又说明了什么呢? 2019-10-24
  • 进编制、最好是提干、这依然是大家的就业选择。公有制体制面临大革命了。有效释放进入体制享福的劳动力。 2019-10-23
  • 朝鲜军人敬了一个礼 特朗普看到后马上回了一个 2019-10-23
  • 研究:亚洲民众更关注健康食品 2019-10-21
  • 孕妇每天一两杯咖啡 不会影响胎儿 2019-10-21
  • 山西:首批2亿元专项资金保障提升农村安全饮水工程 2019-10-14
  • 英国成功完成机器人辅助眼部手术试验 2019-10-14
  • 其实,生产力发展了,社会财富丰富了,把小萌们养起来也不是什么问题……但你们不能被养着还养出脾气来还妄图对真正的劳动者指手画脚! 2019-10-08
  • 广州今年建成1500公里污水管网 2019-09-19
  • 人贵有自知之明嘛[哈哈] 2019-09-19
  • 少些功利才能重拾学习的乐趣 2019-09-09
  • 昌吉州:让绿色成为生态底色发展主色 2019-09-09
  • 国际3d短片奖金金额 包牛牛图片怎么一键上传 开艾灸养生馆不好赚钱 上证指上证指数行情 福彩012路分析 篮球让分胜负规则 排列五走势图2元网 上海时时彩预测软件下载 学历低学什么手艺最赚钱 股票融资10万一天利息多少钱